查看原文
其他

15北师大版九下数学3.4 圆周角和圆心角的关系 知识点精讲

全心服务孩子👉 中小学霸 2021-10-26


知识点总结 

圆心角与圆周角:

圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。

重要结论:

①同弧(同弦)所对的圆周角是圆心角的一半(即½)

②直径所对的圆周角是直角,即90º

解题思路:

结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。

要点1:圆周角

 1.圆周角定义:

像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.

2圆周角定理:

一条弧所对的圆周角等于它所对圆心角度数的一半。

3.圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;

推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

要点诠释:

(1)圆周角必须满足两个条件:①顶点在圆上:②角的两边都和圆相交.

(2)圆周角定理成立的前提条件是在同圆或等圆中.

(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上:圆心在圆周角的内部:圆心在圆周

角的外部,(如下图)



要点2:圆内接四边形


1.圆内接四边形定义:

四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.

2.圆内接四边形性质:

圆内接四边形的对角互补.如图,四边形ABCD是00的内接四边形,则∠A+∠C=180°,∠B+∠D=180° .

要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.


习题讲析


练习题:


图文导学


教学设计

圆周角和圆心角的关系

一、 教材分析

1、 教材的地位和作用

本课是在学习了圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是圆这章的重点内容之一。

2、 依学情定目标

我们面对的是已具备一定知识储备和一定认知能力的个性鲜明的学生,他们有较强的自我发展意识,根据新课程标准的学段目标要求,结合学生实际情况制订以下三个方面的教学目标:

1)知识目标:了解圆周角和圆心角的关系,有机渗透由特殊到一般思想、分类思想、化归思想。

2)能力目标:引导学生能主动地通过:实验、观察、猜想、验证圆周角和圆心角的关系,培养学生的合情推理能力、实践能力和创新精神,从而提高数学素养。

3)情感目标:创设生活情境激发学生对数学的好奇心、求知欲,营造民主、和谐的课堂氛围,让学生在愉快的学习中不断获得成功的体验,培养学生以严谨求实的态度思考数学。

3、教学重点、难点

重点:经历探索圆周角和圆心角的关系的过程,了解圆周角和圆心角的关系

难点:认识圆周角定理需分三种情况逐一证明的必要性。

二、 教法、学法分析

数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法和学法是密不可分的。本课采用以探究式教学法为主,发现法、分组交流合作法、启发式教学法等多种方法相结合,以学生的活动为主线,突出重点突破难点,发展学生的数学素养。注重数学与生活的联系,引导学生用数学的眼光思考问题、发现规律、验证猜想;注重学生的个性差异,因材施教,分层教学;为了转变以往学生只是认真听讲、机械记忆、练习巩固的被动学习方式,以探究式学习和有意义接受式学习为指导,引导学生在动手实践、自主探索、合作交流活动中发现新知、发展能力,充分发挥学生的主体作用。教师运用多元的评价对学生适时、有度的激励,帮助学生认识自我,建立自信,以我要学的主人翁姿态投入学习,不仅学会,而且会学、乐学。


三、教学过程分析

1、创设情境,导入新课

新课标指出对数学的认识应处处着眼于人的发展和现实生活之间的密切联系。根据这一理念和九年级学生的年龄特点、心理发展规律,联系生活中喜闻乐见的话题,创设有一定挑战性的问题情境,目的在于激发学生的探索激情和求知欲望。

1) 欣赏一段精彩的足球视频。

2) 学生依据自已在体育课上踢球的经验,思考:球员射中球门的难易程度与什么有关?

设计意图:通过设计足球场景,联系中国足球现状,既能对学生进行爱国主义教育,又让学生在两种思维的碰撞中带着悬念进入新课的学习。

2、读书指导,初步认知

1)阅读教材,了解圆周角的概念,根据对概念的理解画圆周角,一学生板演。

设计意图:充分利用教材,学好基础知识、基本概念,培养学生的读书能力和理解力,体现学生是学习的主人发挥学生的主体作用,掌握圆周角的定义。

2)巩固练习,看谁最棒。(运用多媒体)

判别下列各图形中的角是不是圆周角。

设计意图:巩固圆周角概念,明确圆周角必须满足两个条件:顶点在圆上,角的两边分别与圆还有一个交点。

3、分组讨论,解决问题

荷兰数学家和数学教育家弗赖登塔尔的再创造数学教学模式强调:以学生的独立学习为基础的小组合作,全班交流,教师启导。本活动的设计让学生有自主探索、合作交流的时间和空间,使学生经历探索圆周角和圆心角的关系的过程,体会由特殊到一般的思想方法。在学生分组探索圆周角和圆心角的关系的过程中教师深入课堂对学生适时的点拨、指导。师生互动,彼此形成一个学习共同体。

1)动手操作,发现规律

请同学们动手画出⊙O中弧AB所对的圆周角和圆心角。各小组总结出一共画了几种不同的情况?小组派代表板演。

设计意图:通过这种具有探索性与挑战性的活动,培养学生独立思考、合作交流的能力,渗透化归思想,初步认识圆周角和圆心角的这三种位置关系。

特别说明:若学生不能准确地归纳出圆周角和圆心角的这三种位置关系,教师可利用几何画板动态演示,让学生在教师的启发下达成这一教学目标。

量一量弧AB所对的圆周角和圆心角的度数,看看有什么发现?

设计意图:如果直接给出同弧所对的圆周角是它所对的圆心角的一半这一结论,学生会感到困惑,而让学生通过动手实践,对圆周角和圆心角度数的观察,自已发现规律,会让学生体验到成功的喜悦,为下面圆周角定理的证明打好桥铺好路。若在测量时没有发现这样的规律也不要紧,教师要对学生的实践过程而不只是对结果进行评价,教师仍可借助几何画板进行说明。

2)团结合作,验证猜想

有了实践的支撑,必须有理论的证明。学生按小组分组合作,自行探讨证明的方法。教师在巡视中若发现某一小组的活动出现了偏差,就深入其中进行引导,大声的进行点拔,让其它学生也能有所启发。学生在充分的合作交流后,已小有收获,于是分小组进行汇报,其它小组进行评价。在汇报的过程中,可能有的组只汇报了一种情况的证明过程,那么别的组就会依据自已的结果进行补充,从而让学生认识圆周角定理需分三种情况逐一证明的必要性。

特别说明:由于圆心在圆周角的一边上这种情况,学生完全可以自己通过交流完成,这一步是第二、第三种情况证明的基础,如果对第二、第三种情况没有一个组想到证明的思路,教师就可利用几何画板进行启发,第二、第三种情况是否可转化成第一种情况解决,使学生认识到转化的条件是:加以角的顶点为端点的直径为辅助线。

4、关注差异,分层教学

设计意图:理解巩固圆周角和圆心角的关系和它的应用.满足不同层次学生需求,让不同的人在数学上得到不同的发展

A层:一起试试看(运用多媒体)

1.求圆O中角X的度数?

设计意图:即可巩固圆周角定理,又可培养学生的竞争意识,以适应现代生活的需要。同时,对回答积极准确的同学及时表扬,激发学习的积极性。

B层:再帮一个忙

2.如图,A、B是圆O上的两点,且AOB=100,C是圆O上不与A、B重合的任意一点,求ACB的度数。

设计意图:因圆中有关点、线、角的位置关系复杂,学生往往对已知条件分析不够全面,会忽视某个条件,某种特殊情况,导致漏解。采用小组讨论的方式进行,并及时进行小组评价。

C层:请你帮帮我

如图:OA、OB、OC都是⊙O的半径 ,且AOB=2BOC.

求证:ACB=2BAC.

设计意图:让不同的人在数学上获得不同的发展,使一部分学生通过练习能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。

5、课堂反思,师生小结

学生谈收获和感受,教师小结。(提示学生从三方面入手:①学到了什么知识;②掌握了哪些数学方法;③体会到了哪些数学思想。)(运用多媒体)

设计意图:使学生体验交流的快乐,感受成功的喜悦。使学生对本节内容有一个更系统、更深刻的认识,提高学生自主建构知识网络、解决问题的能力,达到触类旁通。

6、学以致用,作业适量(附:板书设计)

圆周角和圆心角的关系

圆周角概念:探究活动

一条弧所对的圆周角等于它所对的圆心角的一半

数学思想

四、设计说明

本教学设计突出以下五点:

1. 设计足球场景,数学联系生活;

2. 加强教材利用,培养读书能力;

3. 强化合作意识,创设沟通氛围;

4. 电脑辅助教学,课堂轻松简捷;

5. 注重因材施教,合理分层教学。


点击下方“阅读全文” 观看更多微课视频

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存